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EXECUTIVE SUMMARY

In 1997, the National Marine Fisheries Service, the U.S. Fish and Wildlife Service, and
the Nez Perce Tribe completed the third year of research to investigate migrational
characteristics of subyearling fall chinook salmon in the Snake River Basin. Lyons Ferry
Hatchery subyearling fall chinook salmon were PIT tagged and released weekly from early June
to early July at Pittsburg Landing and Billy Creek on the Snake River and at Big Canyon Creek
on the Clearwater River to collect data on survival, detection probabilities, and travel time. In
spring and early summer 1997, we also captured natural subyearling fall chinook salmon by
beach seine, PIT tagged them, and released them in the Snake River above and below the Salmon
River.

For hatchery fish, survival probability estimates from release in the free-flowing reach of
the Snake River at Pittsburg Landing to the tailrace of Lower Granite Dam ranged from 62% for
the second release t014% for the latest release. For hatchery fish released at Billy Creek,
survival probability estimatesnged from 75% for the earliest release to 9% for the latest release
and for hatchery fish released at Big Canyon Creek, estimates ranged from 55% for the earliest
releases to 9% for the latest release. Natural fish were PIT tagged and released early in the
season in the vicinity of Pittsburg Landing (upper Snake River) with estimated 57% survival.
Natural fish were released throughout the season in the vicinity of Billy Creek, with estimated
32% survival. A small proportion of hatchery subyearling fall chinook salmon residualized and
migrated early in spring 1998; however, as with releases in 1995 and 1996, the number that
overwintered in the river and migrated seaward as yearlings in spring was small and had minimal
effect on survival estimates. A number of comparisons of characteristics of hatchery and natural
fish were made. Results generally support the use of hatchery fall chinook salmon as surrogates
for natural fall chinook salmon in survival research.

Combining the three years of data for hatchery fish, significant correlations were found
between estimated survival from release to the tailrace of Lower Granite Dam and all three
environmental variables examined (flow, water temperature, and turbidity). Estimated survival
decreased throughout the season, as flow volume and turbidity decreased and water temperature
increased.

In the reach from Lower Granite Dam tailrace to Lower Monumental Dam tailrace,
ranges of exposures in 1995 and 1996 were too narrow to discern relationships with survival.
However, significant relationships were observed between survival and the environmental
variables in 1997, and the relationships were very similar in nature to those in the reach above
Lower Granite Dam. The correlation with survival from Lower Granite Dam to Lower
Monumental Dam was greatest with water temperature (higher survival with cooler water),
followed by flow (higher survival with higher flow volumes), and turbidity (higher survival with
more turbid water).



Survival was generally lower in 1997 between the tailrace of Lower Granite Dam and the
tailrace of Lower Monumental Dam than in 1995 and 1996. We attribute this lower survival to a
combination of factors most likely caused by the high flows observed during June and July of
1997. The high flows resulted in fish arriving at Lower Granite Dam earlier and at a smaller size
than in past years. The higher flows also resulted in increased debris in the bypass systems at
Snake River Dams.



ABSTRACT

Lyons Ferry Hatchery subyearling fall chinook salmon were PIT tagged and released
weekly from early June to early July 1997 at Pittsburg Landing and Billy Creek on the Snake
River and at Big Canyon Creek on the Clearwater River to collect data on survival, detection
probabilities, and travel time. 1n spring and early summer 1997, we also captured natural
subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in the Snake
River above and below the Salmon River. For hatchery fish, survival probability estimates from
release in free-flowing reaches of the Snake and Clearwater Riversto the tailrace of Lower
Granite Dam ranged from 75% for the earliest release to 9% for the latest release. Natural fish
survival in the upper Snake River averaged 57% (tagged early in the season), while natural fish
survival in the lower Snake River, which were released throughout the season averaged 32% to
the tailrace of Lower Granite Dam. Combining the three years of data for hatchery fish,
significant correlations were found between estimated survival and all three environmental
variables examined (flow, water temperature, and turbidity) from release to the tailrace of Lower
Granite Dam. Estimated survival decreased throughout the season, as flow volume and turbidity
decreased and water temperature increased. Survival was generally lower in 1997 between the
tailrace of Lower Granite Dam and the tailrace of Lower Monumental Dam than in 1995 and
1996, we believe due to higher flowsin 1997 that resulted in fish arriving at Lower Granite Dam
earlier and at a smaller size than in past years.
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INTRODUCTION

Snake River fall chinook salmo@ficorhynchus tshawytschaere listed as threatened
under the Endangered Species Act in April 1992 (NMFS 1992). The status was changed to
endangered by emergency action in 1994, then restored to threatened in 1995. Before this study
began, little was known about migrational characteristics of Snake River subyearling fall chinook
salmon, including the proportion that survive passage through the Snake River dams and
reservoirs, how flow volume and water temperature affect their survival, and the percentage of
migrants collected and transported at the dams. As a result, operational strategies to maximize
survival of subyearling chinook salmon in the Snake River have been largely based on data from
studies of subyearling chinook salmon in the lower Columbia River. Information specific to
Snake River migrants is necessary to develop and assess the effects of possible restoration
strategies such as supplementation, dam modification, flow augmentation, spill, or reservoir
drawdown.

For Snake River fall chinook salmon, it has been difficult to collect enough fish for
experimental subjects. Although the number of natural subyearling fall chinook salmon
collected by beach seine and PIT tagged upstream from Lower Granite Dam has increased in
recent years (Connor et al. 1994a,b; 1997a,b), numbers are still too low to make sufficient
releases within a single year to examine relationships among survival, travel time, and
environmental conditions. Three options are available to increase the number of subyearling fall
chinook salmon available for tagging: 1) collect more natural river migrants from the Snake
River using available capture methods, 2) import fall chinook salmon collected in the Columbia
River, where they are more abundant, or 3) use hatchery-reared subyearling fall chinook salmon
of Snake River stock as surrogates for naturally produced migrants. The current population
status of fall chinook salmon in the Snake River and concerns about inter-basin stock transfers
limit the use of options 1 and 2.

Conclusions derived from studies of hatchery-reared fish (option 3) are applicable to
natural fish only if hatchery fish are adequate surrogates. It is unlikely that fish taken directly
from a hatchery, tagged, and released will behave similarly to natural migrants, especially
immediately after release (Steward and Bjornn 1990). However, differences between hatchery-
reared and natural migrants are lessened by acclimation to ambient environmental conditions
prior to release, releasing fish of appropriate size, and timing of releases to coincide with the
migration of natural fish. Moreover, survival information from hatchery fish can help guide
future supplementation efforts using fall chinook salmon in the Snake River Basin.

This study represents an extension of earlier studies (1993-1997) of juvenile salmon and
steelhead survival in the Snake River conducted by the National Marine Fisheries Service and
the University of Washington (Ilwamoto et al. 1994; Muir et al. 1995, 1996; Smith et al. 1998).

In these studies, researchers estimated passage survival and PIT-tag detection probabilities (an
approximation of fish guidance efficiency (FGE) at the dams when no water is spilled) for
hatchery-reared and natural yearling spring/summer chinook salmon and hatchery-reared
yearling steelhead). mykis}using Single-Release (SR) and Paired-Release (PR)
methodologies for survival estimation.



Here we report the results of the third year of releases of PIT-tagged hatchery subyearling
fall chinook salmon in the Snake River and the second year of releases in the Clearwater River to
estimate survival and travel time. Study objectives were to: 1) estimate detection and passage
survival probabilities of hatchery subyearling fall chinook salmon released in the Snake and
Clearwater Rivers, and 2) investigate relationships between travel times and passage survival
probabilities of subyearling fall chinook salmon and environmental influences such as flow
volume, water temperature, and turbidity.

METHODS

Study Area

The study was conducted from Billy Creek and Pittsburg Landing on the Snake River
(Snake River Kilometer (RKm) 265 and 346, respectively) and Big Canyon Creek on the
Clearwater River (Clearwater RKm 57) to McNary Dam on the Columbia River (Columbia RKm
470) (Fig. 1). The area included a 111-km free-flowing reach of the Snake River, a 57-km free-
flowing reach of the Clearwater River (confluence at Snake RKm 224), and five reservoirs and
dams: Lower Granite Dam (Snake RKm 173), Little Goose Dam (Snake RKm 113), Lower
Monumental Dam (Snake RKm 67), Ice Harbor Dam (Snake RKm 16), and McNary Dam. The
Snake River enters the Columbia River at RKm 522.

Primary Release Groups

All subyearling fall chinook salmon used in our study in 1997 were Snake River fall
chinook stock from Lyons Ferry Hatchery (Snake RKm 95) (Washington Department of Fish and
Wildlife). Our goal was to release experimental fish of approximately the same size as natural
fall chinook salmon present in the Snake River at the time of release. On a given date, natural
fall chinook salmon in the Clearwater River were generally smaller than those in the Snake River
(Arnsberg et al. 1992). Target length for fish in primary release groups was 75 mm in fork
length.

Primary groups were released into the Snake River at Billy Creek and Pittsburg Landing
and into the Clearwater River at Big Canyon Creek. Fish for primary release groups were PIT
tagged at Lyons Ferry Hatchery, using established techniques (Iwamoto et al. 1994). Fish were
tagged weekly from 28 May to 8 July. At the hatchery, well water was supplied during tagging
and loading for transportation at a near constant temperature averagh@ IHoB length of
all fish tagged was measured, and about 10% of the fish were weighed. Fish were not coded-
wire-tagged, fin clipped, or marked in any other way in 1997.

Immediately after tagging, we transported tagged fish in truck-mounted aerated tanks
(approximately 1,000 L) to the three release sites. Elapsed time between departure from the
hatchery and release was standardized at 8 hours for all three release sites. Actual transport to
Billy Creek, Pittsburg Landing, and Big Canyon Creek release sites took about 3, 6, and 3 hours,
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Figure 1. Study area showing location of Lyons Ferry Hatchery and release sites (Pittsburg
Landing, Billy Creek, and Big Canyon Creek), 1997.



respectively. Immediately after arrival at Pittsburg Landing, fish were acclimated to ambient
river temperature using a gasoline powered water pump that slowly replaced the hatchery water
in the tank with river water. Upon arrival at Billy Creek and Big Canyon Creek, trucks were
parked for about 3 hours before beginning in-tank acclimation to river temperature. After
acclimation, fish were released directly into the Snake and Clearwater Rivers via flexible hose.
Holding densities in the transport vehicles were kept below 8 kg fisbi/mater.

Secondary Release Groups

Secondary releases at Lower Granite Dam were used to assess mortality that may have
occurred to fish in primary release groups between the point of detection at Lower Granite Dam
and the point of remixing with nondetected fish in the tailrace. A pair of release groups is used:
the treatment group released into the terminus of the juvenile bypass system at Lower Granite
Dam, and the reference group released into the tailrace (lIwamoto et al. 1994). We PIT tagged
hatchery subyearling fall chinook salmon on 28 and 30 May at Lyons Ferry Hatchery for
eventual use as secondary release groups at Lower Granite Dam. The tagging and transport
procedures were the same as those used for the primary release groups, and they were all released
at Pittsburg Landing.

The fish from these release groups were subsequently recovered at Lower Granite Dam
for use in secondary releases. Their PIT-tag codes were entered into the separation-by-code
system at Lower Granite Dam at the time of their release, so that we could collect them when
they were detected as they passed through the juvenile collection facility. Because fish for our
secondary release groups were initially released at Pittsburg Landing and then recaptured at
Lower Granite Dam, they were representative of the fish from our primary release groups as they
passed Lower Granite Dam.

We released secondary groups in the period (3 to 18 July) during which most PIT-tagged
fish from the primary release groups were passing Lower Granite Dam. Each day, fish were
collected for the secondary group using the separation-by-code system with the PIT-tag codes
retrieved from the system computer. Bypass and tailrace release groups were automatically
sorted by the separation-by-code system into two tanks (alternated daily). Fish were loaded into
1.8 x 1.8 x 0.9-m (1,300-L) aluminum tanks mounted on trucks using sanctuary dipnets (without
anesthesia). Holding densities were low, not exceeding 100 fish per tank. Tanks were aerated
and supplied with at least 2 L/min of water per tank prior to release. Mortalities were recorded
and loose tags recovered and recorded just before live fish were released. Treatment groups were
released directly from the truck-mounted tank into a PVC pipe that ran parallel to the pipe used
to return PIT-tagged fish diverted by the slide-gate to the river. Reference groups were
transferred to similar-sized containers on board a vessel, transported to the tailrace release site,
and released water-to-water. Fish were released between 12:00 and 3:00 PM.



Operation of PIT-Tag Interrogation and Slide-Gate Systems

Slide gates at Lower Granite, Little Goose, and Lower Monumental Dams automatically
diverted most detected PIT-tagged fish back to the river in 1997 (details of slide-gate operation
in Muir et al. 1995). PIT-tag interrogation was terminated in 1997 on 31 October at Lower
Granite, Little Goose, Lower Monumental, and Bonneville Dams, and on 14 December at
McNary Dam. In 1998, operations resumed on 26 March at Lower Granite, Little Goose, and
Lower Monumental Dams, on 9 April at McNary Dam, and on 21 March at John Day and
Bonneville Dams. To study growth, we recaptured a subsample of each release group using the
separation-by-code system at Little Goose Dam.

Data Analyses

We used the methods described by Iwamoto et al. (1994) and Muir et al. (1995, 1996) for
data collection and retrieval from the PIT Tag Information System (PTAGIS), database quality
assurance/control, construction of capture histories, tests of assumptions, estimation of survival
and detection probabilities, and travel time. The statistical models used to estimate survival from
PIT-tag data were the Single-Release (SR) and Paired-Release (PR) Models. Background
information and statistical theory underlying these models were described by lwamoto et al.
(1994).

Residualization and Interpretation of Model Parameters

The tendency of subyearling fall chinook salmon to residualize (some subyearling fish
overwinter in the Snake River, then resume migration as yearlings the following spring) violates
assumptions of the Single-Release Model (Smith et al. 1997). Fish released in the Snake and
Clearwater Rivers that immediately migrated downstream would be expected to have higher
survival probabilities than would fish released at the same time that residualized and spent the
winter in the reservoir prior to migrating the following spring.

Because of effects of residualization on survival estimates, we first based our survival
analyses solely on PIT-tag detections that occurred during the summer and fall following release,
and ignored detections that occurred the following spring. This approach changed the
interpretation of survival probabilities in the Single-Release Model. For example, the parameter
previously defined as the probability of survival within a particular reach (lwamoto et al. 1994;
Muir et al. 1995, 1996), became the combined probability of migrating through the reach as a
subyearling and the probability of surviving the reach for subyearling migrants (i.e., the product
of the two probabilities). The detection probability at each dam was the probability for
individuals that migrated as subyearlings, not for the entire group.

We then estimated the proportion of fish tagged in 1997 that residualized, based on the
proportion detected in the spring of 1998 and detection probabilities of PIT-tagged hatchery fall
chinook salmon released as yearlings in the spring of 1998. The probability of detecting in 1998
a fish that residualized and migrated as a yearling could not be estimated reliably from the
residualized fish themselves because too few of them were detected in 1998.



Validity of Secondary Releases

We assessed the validity of our secondary releases by comparing detection rates and
travel times downstream from Lower Granite Dam for fish from secondary release groups with
those for fish from primary release groups.

Detection Probability vs. Fish Guidance Efficiency

Fish guidance efficiency (FGE) is the proportion of those fish entering the powerhouse
that are successfully guided away from turbine intakes and into juvenile bypass facilities. The
FGE at a particular dam can be expressed as:

A

A+ B

FGE = x 100% (1)

where: A= number of fish diverted into the bypass system; and
B = number of fish that passed through turbines.

The probability of detecting a PIT-tagged fi$t) éstimated by the Single-Release Model is
similar, but not equivalent to FGE:

where: C= number of fish detected at the dam; and
D = number of fish that survived to the tailrace of the dam but were not detected as
they passed.

The valueA andC are nearly identical: a difference could be caused by a small amount of
mortality that may occur in the bypass system between entry into the powerhouse and the point
of detection and the negligible number of fish that pass through the bypass without being
detected. The valug includes only fish that entered the powerhouse, viligdso includes fish

that passed via the spillway. However, even under conditions of no spill at the dam, the values
of B andD differ, becaus® includes all fish that enter the turbines @hahcludes only those

that survive turbine passage. Thus, when there is noRslia larger value than FGE (and the
estimate P generally overestimates FGE) because the numerators for FGE (Equation 1) and P
(Equation 2) are essentially the same, but the denominator for FGE is larger than the
denominator for P. The extent to which P overestimates FGE depends on the probability of
surviving turbine passag&] for the fraction of fish that pass through turbines. Assumingithat
andC are equal, an estimate of FGE can be derived from:



FGE = — L x 100%. (3)
P-s,+ (1 - B

Comparison of Natural and Hatchery Subyearling Chinook Salmon

To evaluate the efficacy of using hatchery fish as surrogates for natural fish we captured
natural subyearling chinook salmon by beach seine between Snake River RKm 224 and 357 from
April to July 1997. This stretch was divided into three sections, identified as upstream,
midstream, and downstream. Natural fish were PIT tagged and released where they were
captured to resume rearing and seaward migration. We compared fork length at release, travel
times to Lower Granite Dam, time of passage at Lower Granite Dam, and survival to the tailrace
of Lower Granite Dam between these PIT-tagged natural subyearlings and the hatchery
subyearlings released at Pittsburg Landing, Billy Creek, and Big Canyon Creek. Natural fish
released in the upstream reach were most comparable in release timing and location with the first
release of the hatchery group at Pittsburg Landing. Natural fish were released in the downstream
reach over a longer period of time, and were comparable in release timing and location to the
first four release groups of hatchery fish at Billy Creek. We also recaptured a subsample of PIT-
tagged natural and hatchery fish at Little Goose Dam to compare growth and condition
factor K).

Survival, Travel Time, and Environmental Variables

Subyearling fall chinook salmon migrate over prolonged periods, during which
environmental conditions can change dramatically. Measures of environmental conditions
relevant to migration performance must be chosen carefully. This is especially true for
subyearlings taken directly from hatcheries and released into rivers, because both timing of onset
of migration and migration rates can vary widely among individuals.

Smith et al. (1998) investigated relationships of environmental factors to survival of
actively migrating yearling chinook salmon. Indices of exposure to factors at each dam for each
group of PIT-tagged fish were defined as the average value of the factor during the period
between the group’s 25th and 75th percentiles of passage at the dam. However, indices defined
over a “middle-of-passage” period were not appropriate to relate to survival to Lower Granite
Dam tailrace for subyearling fall chinook salmon released in free-flowing river sections above
Lower Granite Dam. For subyearlings, mortality was relatively high in this river section, and
much of the mortality probably occurred prior to the date of the 25th percentile of passage at
Lower Granite Dam, which was as long as 44 days after the date of release. Therefore, the
middle-of-passage index is inappropriate, since many fish in the release group never experienced
the conditions prevailing on the date of 25th percentile of passage; they were already dead.

Instead, for release groups in free-flowing reaches above Lower Granite Dam, we defined
indices of exposure to environmental factors as the average daily value measured at Lower



Granite Dam between the date of release and the date of the 5th percentile of passage at Lower
Granite Dam. Using indices defined in the period immediately after release, we characterized
conditions experienced by most of the fish after release and before initiation of migration.
Relationships between exposure indices and survival and travel time from release to Lower
Granite Dam tailrace were examined with linear regression using data for individual release
groups from the Snake and Clearwater Rivers in 1995, 1996, and 1997.

To investigate relationships between environmental factors and survival and travel time
in reaches below Lower Granite Dam, we redefined groups of PIT-tagged fish based on the date
of passage at Lower Granite Dam, rather than based on the date and location of initial release.
Using this approach, we identified groups of fish that actively migrated, and that had passed
Lower Granite Dam within the same 24-hour period. The “post-Lower Granite” detection
histories of all fish released to the tailrace of Lower Granite Dam on a particular day were
tabulated, and the Single-Release Model was applied to estimate survival and travel time for the
“daily-release group” from Lower Granite Dam tailrace to Lower Monumental Dam tailrace
(i.e., through two reservoirs and two dams).

Using this approach it was difficult to obtain groups of sufficient size to estimate survival
probabilities with high precision. To obtain reasonably sized groups, daily-release groups were
made up of fish from all primary release groups in a particular year (e.g., in 1997 there were six
each from Billy Creek, Pittsburg Landing, and Big Canyon Creek) and fish from secondary
release groups from Pittsburg Landing (only thoserfitthandled at Lower Granite Dam via the
separation-by-code system and used in post-detection bypass survival releases). Daily-release
groups were further pooled by week. Thus, we estimated the survival probability and median
travel time from Lower Granite Dam tailrace to Lower Monumental Dam tailrace for 13 groups
of fish passing Lower Granite Dam during the following intervals in 1997: 9-15 June, 16-22
June, 23-29 June, 30 June-6 July, 7-13 July, 14-20 July, 21-27 July, 28 July-3 August, 4-10
August, 11-17 August, 18-24 August, 25-31 August, and 1-7 September. Indices of exposure to
flow, water temperature, and turbidity for a weekly pooled group were the averages of the daily
values at Lower Granite Dam during the period that fish for that group were detected at Lower
Granite Dam. We obtained the mean daily value of each variable measured at each dam from
sites on the World Wide Web maintained by the Columbia Basin Research group of the
University of Washington School of Fisheries (“Data Access in Real Time,”
http://www.cqgs.washington.edu/dart/dart.html) and by the Fish Passage Center
(http://www.teleport.com/~fpc).

RESULTS

Primary Release Groups

A total of 7,474 subyearling fall chinook salmon were PIT tagged and released at Billy
Creek, 7,478 fish at Pittsburg Landing, and 7,527 fish at Big Canyon Creek (Table 1). Tagging
and handling mortality at the hatchery averaged 0.8% and transport mortality averaged 0.2%



Table 1. Information on individual groups of PIT-tagged hatchery subyearling fall chinook
salmon released in 1997.

Site Purpose of Release Number Water Mean

release date released temp. (°C) length (mm)

Pittsburg Landing  Secondary 28 May 6,955 16.5 83

Secondary 30 May 6,946 16.9 84

Primary 3 Jun 1,262 16.6 80

Primary 10 Jun 1,245 16.7 82

Primary 17 Jun 1,243 18.1 82

Primary 24 Jun 1,239 18.9 85

. Primary 1 Jul 1,251 18.9 85

Primary | 8 Jul 1,238 20.2 85

Billy Creek Primary 3 Jun 1,247 12.5 80

Primary 10 Jun 1,250 14.0 82

Primary 17 Jun 1,244 15.0 80

Primary 24 Jun 1,250 16.3 84

Primary 1 Jul 1,245 16.4 82

Primary 8 Jul 1,238 19.0 82

Big Canyon Creek  Primary 3 Jun 1,253 9.5 81

Primary 10 Jun 1,238 13.0 82

Primary 17 Jun 1,250 13.1 82

Primary 24 Jun 1,250 13.9 85

Primary 1 Jul 1,267 13.9 86

Primary 8 Jul 1,269 15.1 85




(Table 2). Water temperatures at release ranged from 12.5 t€ 191De Snake River at Billy
Creek, 16.5 to 20°2 in the Snake River at Pittsburg Landing, and from 9.5 to@5ilthe
Clearwater River (Table 1).

Secondary Release Groups

A total of 13,901 subyearling fall chinook salmon were released at Pittsburg Landing in
the Snake River for post-detection bypass evaluation (Table 1). Tagging mortality for these
releases averaged 0.5% and transport mortality averaged 0.1% (Table 2). Post-detection bypass
releases were made at Lower Granite Dam between 3 and 18 July (Table 3). During this time,
release water temperatures were 18 6€19Dnly 673 of the 13,901 fish (4.8%) released at
Pittsburg Landing were recaptured at Lower Granite Dam by the separation-by-code system; 146
were eventually rereleased into the collection channel, 129 were rereleased into the tailrace, and
30 (12.8%) recaptured fish died before they could be released. The remaining 368 fish
recaptured at Lower Granite Dam were radiotagged and used for evaluation of Ice Harbor Dam
spillway passage (Eppard et al. 1998).

Data Analyses
Validity of Secondary Releases

Fish from primary and secondary release groups collected by the separation-by-code
system at Little Goose Dam during the same period were of similar size. Both length and weight
were measured for a total of 41 fish from secondary release groups and 162 fish from primary
release groups. Fish from primary groups were sampled much later into the season: 38 of the 41
secondary-release fish were collected by 13 July, while only 74 of the 162 primary-release fish
were collected by that date. The mean length for fish collected by 13 July was 119.7 mm for
secondary-release fish and 115.6 for primary. Mean weights were 19.8 g and 18.2 g,
respectively. Primary-release fish collected at Little Goose Dam later in the season were larger.

Fish released at Pittsburg Landing on 28 and 30 May for use in secondary releases from
Lower Granite Dam arrived in large numbers at Lower Granite Dam earlier than primary-release
fish. The median date of passage for secondary release groups was 2 July, by which date only
8% of the detections on primary-release fish had occurred. The median date of passage for
primary release groups was 20 July, by which date over 87% of secondary-release fish had
passed the dam.

Because of the high flows during June and July 1997, the majority of secondary release
fish passed Lower Granite Dam during a short time period early in the summer migration, prior
to the time the separation-by-code system was ready to capture them. Over half of the fish
recaptured were then allocated to the Ice Harbor spillway evaluation. For this reason, we were
able to release only 275 fish for post-detection bypass evaluation (Table 3). Paired groups were
released on 3, 4, 11, 12, and 18 July. A higher percentage of fish collected, handled, and
rereleased at Lower Granite Dam were detected downstream than fish detected at Lower Granite
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Table 2. PIT-tagging and transport mortality for hatchery subyearling fall chinook salmon used
in primary releases at Pittsburg Landing, Billy Creek, and Big Canyon Creek and
secondary releases at Pittsburg Landing in 1997.

Release Release Tagging Transport Overall
site date mortality mortality mortality
N % N % N %
Pittsburg Landing 3 Jun 5 04 1 0.1 6 0.5
10 Jun 5 04 0 0.0 5 04
17 Jun 6 05 3 02 9 0.7
24 Jun 17 14 1 0.1 - 18 14
1 Jul 16 1.3 1 0.1 17 13
8 Jul 16 1.3 3 02 19 1.5
Billy Creek 3 Jun 3 02 4 03 7 0.6
10 Jun 6 05 1 0.1 7 0.6
17 Jun 7 0.6 2 02 9 07
24 Jun 6 05 2 02 8 0.6
1 Jul 11 0.9 3 02 14 1.1
8 Jul 15 12 1 01 16 13
Big Canyon Creek 3 Jun 4 03 2 02 6 05
10 Jun 17 14 2 02 19 15
17 Jun 7 0.6 3 02 10 0.8
24 Jun 13 1.0 1 01 14 1.1
1 Jul 13 1.0 0 00 13 1.0
8 Jul 8 0.6 3 02 11 09
Primary release totals - 175 0.8 33 0.2 208 0.9
28 May 20 03 11 0.2 31 04
30 May 44 0.6 1 0.1 45 0.6
Secondary release totals 64 0.5 12 0.1 76 0.5
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Table 3. Information on individual secondary release groups of hatchery subyearling fall
chinook salmon released at Lower Granite Dam in 1997.

Location Release Number Mortalities Number Temp. (°C)
Date  collected released
bypass 3 Jul 47 2 45 18.0
tailrace 3 Jul 42 2 40 18.0
bypass 4 Jul 17 1 16 18.0
tailrace 4 Jul 20 0 20 18.0
bypass 11 Jul 39 9 30 18.9
tailrace 11 Jul 33 7 26 18.9
bypassA 12 Jul 33 2 31 . 19.0
tailrace : 12 Jul 23 1 22 19.0
bypass 18 Jul 27 3 - 24 19.0
tailrace 18 Jul 24 3 21 19.0
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Dam and returned to the river without handling. Of 129 fish released into the tailrace of Lower
Granite Dam, 58% were detected again at one or more dams downstream from Lower Granite
Dam. Of a total 1,657 fish detected and returned to the river without handling on the same days
that secondary groups were released into the tailrace, only 33% were detected again downstream.

The post-detection bypass survival estimate (weighted geometric mean of estimates for
paired releases on 5 days) for fish released into the collection system at Lower Granite Dam was
0.867 (s.e. 0.115), suggesting post-detection bypass mortality occurred at this site. However, the
small number of paired releases resulted in a large standard error for the estimate, and differences
in post-release performance of fish handled at Lower Granite Dam compared to those not
handled makes the post-detection survival estimate suspect. Therefore, we did not use the
estimate of post-detection bypass survival, and used the SR model to estimate detection and
survival probabilities for primary release groups. Potential effects of post-detection mortality on
the SR Model survival estimates are evaluated in the Discussion section.

Tests of Model Assumptions

Only a few--no more than expected by chance alone--tests of assumptions showed
significant @ <0.10) violations. For primary release groups, detected and nondetected fish at a
particular dam were mixed as they passed dams farther downstream (Table 4), and detection
history at upper dams did not affect probabilities of survival or detection at downstream dams
(Table 5). On the basis of these results, we found no reason to reject the validity of parameter
estimates from the Single-Release Model for primary release groups. For secondary release
groups, detected and nondetected fish at one dam were not mixed farther downstream (Table 4),
though serious lack of fit to the Single-Release Model did not result (Table 5).

Detection Probabilities

Overall, detection probabilities were lower at Lower Granite Dam in 1997 (Table 6) than
in 1996, most likely due to the operation of the surface collector (and associated spill) (Fig. 2).
Detection probabilities were higher at both Little Goose and Lower Monumental Dams than in
1996. At Little Goose Dam, this increase was most likely due to the extended bar screens
installed prior to the 1997 migration. There were no apparent seasonal differences in detection
probabilities nor between release locations.

Survival Probabilities

Because of problems with post-detection bypass releases described previously, for
evaluation purposes we assumed post-detection bypass survival was 100%, and the SR Model
was used to estimate survival for all primary release groups. If post-detection mortality occurred
at all dams, then the SR Model would tend to overestimate survival from release to Lower
Granite Dam. Survival estimates would also be biased for reaches below Lower Granite Dam,
but the direction of the bias would depend on the relative degree of post-detection mortality at
each dam.
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Survival from the point of release to Lower Granite Dam tailrace for all three series of
releases decreased with later release date within a year (Fig. 3). Survival estimates from the
point of release to Lower Monumental Dam tailrace were similar between the Pittsburg landing
and Billy Creek release sites with the Pittsburg Landing release site generally having slightly
lower survival in 1997 (Table 7). Estimated survival from Big Canyon Creek on the Clearwater
River to Lower Monumental Dam tailrace was lower than from the Snake River sites in 1997.
There were no apparent differences between release sites in survival estimates in the reaches
downstream from Lower Granite Dam in 1997 (Table 7).

Survival for the weekly passage groups leaving Lower Granite Dam to Lower
Monumental Dam tailrace was highest at the beginning of the summer migration in 1997
(Table 8, Fig. 4). Estimated survival below Lower Granite Dam was substantially lower in 1997
than in previous years, especially in July.

Travel Time

The median elapsed travel time from release until detection at Lower Granite Dam was
about the same for PIT-tagged hatchery subyearling chinook salmon released from Pittsburg
Landing (173 km from Lower Granite Dam) as for those released at Big Canyon Creek (108 km
from Lower Granite Dam) and Billy Creek (92 km from Lower Granite Dam) (Table 9). That is,
migration rates (km/day) were higher for fish released at Pittsburg Landing than at Big Canyon
or Billy Creek. Migration rates between each pair of dams (Lower Granite to Little Goose, Little
Goose to Lower Monumental, and Lower Monumental to McNary) were more similar between
release sites (Tables 10-13). For all groups, migration rates between Lower Monumental and
McNary Dams were substantially higher than in the previous reaches (Table 12). From all
release groups combined, a total of 20 fish were detected at both McNary Dam and Bonneville
Dam. The median travel time for this 236 km stretch was 6.1 days (38.7 km/day).

Comparison of Natural and Hatchery Subyearling Chinook Salmon

Hatchery subyearling chinook salmon released at Pittsburg Landing, Billy Creek, and Big
Canyon Creek averaged 3 to 8 mm longer at release than natural subyearling chinook salmon in
1997 (Table 14). Hatchery and natural fish both exhibited protracted travel times from release to
Lower Granite Dam, with hatchery fish taking 1 to 4 days longer (Table 14). Both groups passed
Lower Granite Dam primarily in the summer months of July and August (Fig. 5). The estimated
survival probability from release to Lower Granite Dam was nearly identical for natural fish
released in the upstream stretch of the Snake River and for the first group of hatchery fish
released from Pittsburg Landing (Table 14). Estimated survival was substantially higher for the
first four release groups of hatchery fish from Billy Creek than for natural fish released during
the same time period. Hatchery fish were generally less in fork length and weight than natural
fish when recaptured at Little Goose Dam. Both groups had similarly high condition factors
when recaptured at Little Goose Dam (Table 14), while natural fish grew at a slightly higher rate
than hatchery fish.
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Figure 3. Estimated survival probabilities (with standard errors) from point of release in the
Snake (Pittsburg Landing, Billy Creek, and Asotin) and Clearwater (Big Canyon Creek)
Rivers to the tailrace of Lower Granite Dam in 1995, 1996, and 1997.
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Figure 4. Estimated survival probabilities (with standard errors) to the tailrace of Lower
Monumental Dam for PIT-tagged hatchery subyearling fall chinook salmon leaving
Lower Granite Dam each week during 1995-1997.
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Figure 5. Passage distributions of wild and hatchery subyearling fall chinook salmon at Lower
Granite Dam in 1997.
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Residualization--PIT-Tag Detections in Spring 1998

A total of 461 fish (2.0%) from primary groups of hatchery fall chinook salmon released
as subyearlings in 1997 were detected at Snake and Columbia River Dams in spring 1998
(Table 15). Detections of overwintered fall chinook salmon began soon after the juvenile bypass
systems began operation in 1998 (Fig. 6), indicating that some hatchery fall chinook salmon
probably migrated from rearing areas to the lower Snake River in 1997 and spent the winter in
the reservoirs between dams. However, because detection systems at Snake and Columbia River
dams were not operational until 26 March to 5 April, we were unable to determine exactly in
which reservoir fish residualized or when the holdovers resumed migrating in 1998. Holdovers
were detected into early May 1998. Among the three release sites, fish released at Big Canyon
Creek were detected in 1998 at the lowest rate (0.9%), probably because of lower survival rates
in 1997 (Table 7). Percentages of fish released at Pittsburg Landing (2.2%) and Billy Creek
(3.1%) were slightly higher. The proportion of fish detected in 1998 was generally higher for
groups released later in 1997 than for earlier release groups (Table 15).

In spring 1998, PIT-tagged yearling fall chinook salmon reared at Lyons Ferry Hatchery
were released at Pittsburg Landing on the Snake River and at Big Canyon Creek on the
Clearwater River. Of 9,942 yearlings released at Pittsburg Landing, about 70% were detected at
least once as they migrated down the Snake River, and about 57% of 7,459 yearlings released at
Big Canyon Creek were detected. We assumed fish from our 1997 primary release groups that
overwintered were equally likely to be detected as yearlings released in 1998. That is, the 395
fish (Table 15) released in the Snake River and detected in 1998 represented 70% of the total that
survived overwintering and migrated as yearlings, and the 66 fish from Clearwater River release
groups detected in 1998 represented 57%. Thus, we estimated that 3.7% (2.6%/0.70) of
subyearlings released in the Snake River in 1997 and 1.6% (0.9%/0.57) of those released in the
Clearwater River actually migrated in spring 1998.

Little is known about the overwinter survival probability of residualizing subyearling fall
chinook salmon. Most subyearlings that cease migrating probably remain in reservoirs where
they likely have low metabolic needs because water temperatures are low. Low temperatures
likely also result in low predation rates, resulting in higher overwinter survival. Assuming that
winter survival for overwintering fish between 14 December 1997 and 1 April 1998 was about
65% regardless of release date or site, we estimated that 5.7% (3.7%/0.65) of the subyearlings
released in the Snake River in1997 and 2.5% (1.6%/0.65) of those released in the Clearwater
River did not migrate in 1997. That is, the proportions of fish that migrated from the Snake and
Clearwater Rivers in 1997 were 94.3% and 97.5%, respectively.

Applying the adjustments for 1998 yearling detection probability and overwinter survival
probability to the individual release groups (Table 15), the estimated proportion that migrated in
1997 ranges from 87.5 (24 June release from Billy Creek) to 99.5% (3 June release from Big
Canyon Creek).
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Table 15. Detections (percent) in spring 1998 of hatchery fall chinook salmon released as
subyearlings in 1997 at Pittsburg Landing and Billy Creek on the Snake River and
Big Canyon Creek on the Clearwater River. Standard errors is parentheses.

Percent detected in spring 1998

Release Big Canyon Creek Billy Creek Pittsburg Landing Total

date |

3 Jun 2(0.2) 4(0.3) 8 (0.6) 14 (0.4)

10 Jun 3(0.2) 4 (0.3) 14 (1.1) 21 (0.6)

17 Jun 20 (1.6) 52 (4.2) 24 (1.9) 96 (2.6)

24 Jun 18 (1.4) 71 (5.7) 50 (4.0) 139 (3.7)
1 Jul 15(1.2) 65 (5.2) 40 (3.2) 120 (3.2)
8 Jul 8 (0.6) 35(2.8) 28 (2.2) 71 (1.9)
All 66 (0.9) 231 (3.1 - 164 (2.2) 461 (2.0)

dates

39



"L66] Ul ure(g ULty
IOMO ] 9A0QE PISBIJI Uow[es yoouryd [[eJ A1oyorey padsel-11d JO 8661 Surids ur Suonoojop Jo SUOHEIO] pue SUONDAS( "9 2InS1,]

fey z1 Rely g ldy g2 ldy 1z idy 1 Idy / lepy Le

HIIE

[T

[T

HIT]
[[[{T]

~0¢

1171
HITITITTIT]
1]
(%) suonoeleQ

Sllnsuuog 1]

Aeq uyor =3

= AreNo mmm -0
[BJUSWINUOI Jomo]

9S00 SMT

d)IuR.IS) JIOMOT

-0g

40



Survival, Travel Time, and Environmental Variables

From release to Lower Granite Dam tailrace, survival estimates were highest for the
earliest release groups, and declined for groups released on later dates. A similar trend of
decreasing survival over time was also observed in 1995 and 1996 (Fig. 3). During sampling
times within these years, flows and turbidity generally decreased and water temperatures
generally increased (Fig. 7). Relationships between survival and environmental variables from
point of release to Lower Granite Dam tailrace within years were strong and consistent from year
to year (Table 16, Figs. 8,-10). For the years combined (1995, 1996, and 1997), the correlation
was greatest with water temperature (higher survival with cooler water), followed by flow
(higher survival with higher flow volumes), and turbidity (higher survival with more turbid
water).

The relationship between estimated survival and median travel time for the release groups
has not been consistent from year to year (Fig. 11). The correlation between survival and travel
time was not significant within 1995 and 1996, but was highly significant in the high-flow year
1997. Median travel time was also highly significantly correlated with the environmental
variables in 1997, and was not within 1995 and 1996 (Table 16, Figs. 12-14). In 1997, travel
times from release to Lower Granite Dam tended to increase (migration rate tended to decrease)
throughout the season, as flow decreased, temperature increased, and turbidity decreased. Travel
time relationships in previous years suggested a curved response, with the shortest travel times
(fastest migration rates) occurring at intermediate levels of the environmental variable.

In the reaches below Lower Granite Dam, narrow ranges of exposure levels within 1995
and 1996 made examination of relationships among survival and travel time and environmental
variables difficult (Table 17, Figs. 15-18). However, PIT-tagged subyearling chinook salmon
leaving Lower Granite Dam experienced wider ranges of environmental exposures in 1997.
Relationships between estimated survival and environmental variables from Lower Granite Dam
tailrace to Lower Monumental Dam tailrace were highly significant within 1997, and very
similar in nature to the relationships for the reach above Lower Granite Dam. As in the upper
reach, the correlation was greatest with water temperature (higher survival with cooler water),
followed by flow (higher survival with higher flow volumes), and turbidity (higher survival with
more turbid water). Relationships between environmental variables and survival have not been
consistent between years, partly because of narrow ranges of exposures in 1995 and 1996, so that
when the years are combined in a single analysis, no significant linear correlation exists in this
reach.

Relationships with environmental exposures have been stronger and more consistent
between years for median travel time between Lower Granite and Lower Monumental Dams than
for survival (Figs. 19-21). Travel time relationships also tended to be stronger in 1997, but the
directions of the correlation were the opposite of those seen in the upper reach; travel times from
Lower Granite Dam to Lower Monumental Dam tended to decrease (migration rate increased)
throughout the season, while flow decreased, temperature increased, and turbidity decreased.
Between Lower Granite Dam and Lower Monumental Dam, the longest travel times in 1997
were associated with the highest flows.
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fall chinook migration, 1995-1997.
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DISCUSSION

As in past years, our release strategy resulted in hatchery subyearling chinook salmon
with post-release attributes and survival probability estimates similar to natural fish migrating
from the free-flowing Snake River. Use of hatchery subyearling fall chinook salmon as
surrogates for natural subyearling fall chinook salmon appears feasible when hatchery fish are
provided for research in a timely manner and are released at the appropriate size and time. Fish
reared above Lower Granite Dam for an extended period after release, migrated past Lower
Granite Dam during the summer months, and increased their rate of migration as they migrated
downstream. Therefore, estimated survival probability for hatchery subyearling fall chinook
salmon released in early June can be used as an index of survival for fall chinook salmon
produced naturally in the Snake River. Estimated survival probability for hatchery fish released
in mid-to-late June and early July can be used as an index of survival for late-hatching
subyearling fall chinook salmon produced naturally in the Grande Ronde and Clearwater Rivers.

The life history of juvenile fall chinook salmon, particularly prolonged migrations and the
tendency to residualize, presents some unique challenges for statistical analysis of capture-
recapture data. Survival probability estimates we obtained were actually estimates of the joint
probability of migrating before the PIT-tag interrogation system was shut down at McNary Dam
on 14 December and the probability of surviving migration in that period. However, the small
percentage that did not migrate as subyearlings (less than 6% estimated annually for 1995-1997)
had minimal effect on subyearling survival estimates. An exact estimate would require operation
of detection systems essentially year around. However, the shape of the distribution of yearling
detections in the spring following the year of release indicates that relatively few migrating fish
passed while detection systems were dewatered. An exception might occur during winter flood
events when some winter passage has been documented (Connor et al. 1997a,b).

We estimated survival probabilities in 1997 for two segments of the Snake River fall
chinook salmon migration corridor: 1) release to the tailrace of Lower Granite Dam, and 2) the
reservoir reaches between Snake River Dams. We found survival probability estimates from
release to the tailrace of Lower Granite Dam decreased markedly from early to late release dates.
This trend was also evident for releases of hatchery subyearling chinook salmon made from all
upstream release sites in 1995 and 1996. Based on data collected in all three years, the estimated
survival from release to the tailrace of Lower Granite Dam was highly significantly correlated
with flow, water temperature, and turbidity. Since the three environmental variables were also
highly correlated with each other, determining which variable was most important to subyearling
fall chinook salmon survival is difficult. Therefore, fishery managers are presented with a
complex problem when implementing summer flow augmentation, since releases of water from
Brownlee Reservoir increase flow through the free-flowing Snake River and Lower Granite
Reservoir, but increase water temperature at the same time (Connor et al. 1997b). In contrast,
flow augmentation from Dworshak Reservoir increases flow while decreasing water temperature.
Also, fishery managers have notably little control of the turbidity of Lower Granite Reservoir,
since in most years turbidity in all rivers upstream from Lower Granite Dam is low prior to the
initiation of summer flow augmentation.
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River flow, water temperature, and turbidity may affect survival probability estimates for
hatchery subyearling fall chinook salmon in a number of ways. Delays in passage may occur
under lower flows experienced by hatchery fish released late in the season, compared to those
released early in the season. Hypothesized causes for lower survival are disorientation of
migrants, increased exposure time to predators, reversal of smoltification, and disease
(Park 1969, Raymond 1988, Berggren and Filardo 1993). Warmer water during later releases of
hatchery subyearling fall chinook salmon would result in increased predation due to increased
metabolic demands of predators (Vigg et al. 1991, Vigg and Burley 1991, Curet 1993).
Vulnerability to sight-feeding predators would also be expected to increase as turbidity decreases
(Hobson 1979, Zaret 1979) by decreasing predator reactive distance and increasing predator
encounter rates (Vinyard and O’Brien 1976), as Shively et al. (1991) observed in Lower Granite
Reservoir. Higher turbidity could reduce predation on juvenile salmonids by providing
protective cover during rearing (Simenstad et al. 1982, Gregory 1993, Gregory and Levings
1998).

Predator abundance and feeding selectivity, in concert with decreasing flow and
increasing water temperature, may have caused the steady decline in survival probability
estimates from early to late release dates. Isaak and Bjornn (1996) found that the peak
abundance of northern squawfigttychocheilus oregonengis the tailrace of Lower Granite
Dam occurred in July, during the subyearling fall chinook salmon migration. Poe et al. (1991)
and Shively et al. (1996) found that predation rates depended on the size of juvenile salmonids,
with smaller fish more vulnerable to predation. Fish size is one of the variables known to affect
migration rates in fall chinook salmon, with smaller fish rearing longer in upstream areas before
initiating migration (Connor et al. 1994a). Thus, small hatchery subyearling fall chinook salmon
released late in the year may experience higher predation and lower survival. A similar fate is
expected for later emerging natural fall chinook salmon and could account for the low survival
probability estimates to the tailrace of Lower Granite Dam (17%) reported for fish from the
Clearwater River (Connor et al. 1997a,b).

However, this low survival estimate may be confounded by unseasonably cold water
releases from Dworshak Dam during the Clearwater River wild fall chinook salmon rearing
period. Summer flow augmentation to cool the Snake River in July and August may have
adverse affects on wild fall chinook salmon growth and may delay or inhibit subyearling smolt
development in the Clearwater River (Arnsberg and Statler 1995).

Our findings regarding survival through the reservoirs between Snake River Dams have
been less clear than those above Lower Granite Dam, primarily because the range of observed
environmental exposures were too narrow in 1995 and 1996. However, a wider range of
exposures was observed in 1997, and the relationships between estimated survival and
environmental factors were very similar to those observed in all three years above Lower Granite
Dam.

Estimated survival through reaches below Lower Granite Dam was lower in 1997 than in

the two previous years of the study. We believe this was due to the higher flows observed in
June and July 1997 that resulted in fish migrating sooner in the year, and consequently arriving at
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the Snake River dams at a substantially smaller size than in 1995 and 1996 (from 30 to 40 mm
smaller). The higher flows also increased the amount of debris at the Snake River Dams,
resulting in blockages within the bypass systems. In particular, blockages in the PIT-tag portions
of the bypass systems required additional dewatering. Delayed mortality was higher for natural
subyearling fall chinook salmon at Little Goose Dam during 1997 (7.7%) compared to 1995
(2.2%) and 1996 (1.4%), and higher than normal levels of columnaris were observed (Rex
Baxter, U.S. Army Corps of Engineers, pers. commun., November 1998).

Relating travel time of actively migrating subyearling fall chinook salmon to
environmental variables through reservoir reaches has proven difficult for researchers and has
produced conflicting results (Berggren and Filardo 1993, Giorgi et al.1994). Giorgi et al. (1997)
found that PIT-tagged subyearling chinook salmon in the mid-Columbia River showed no
response to flow or temperature, although there was a significant positive correlation between
fish length and migration rate. Fish in their analysis were substantially smaller than migrant
Snake River subyearling chinook salmon. Additional years of data with variable environmental
conditions will help define the relationships between survival of hatchery subyearling fall
chinook salmon and travel time, flow, water temperature, and turbidity.

Although we assumed that post-detection bypass survival was 100%, based on
evaluations during the spring migration in the Snake River (lwamoto et al. 1994; Muir et al.
1995, 1996), some mortality might have occurred. To resolve this issue in the future will require
releases of fish that are of the appropriate size and physiological condition that have not had their
future performance compromised by handling prior to rerelease. If post-detection bypass
mortality occurred at Lower Granite Dam, then the SR Model overestimated survival
probabilities for the reach from release to Lower Granite Dam tailrace and underestimated
survival probabilities for the reach from Lower Granite Dam tailrace to Little Goose Dam
tailrace.

For example, based on the SR Model, the survival estimates were 0.573, 0.520, and 0.496
for the first Pittsburg Landing release group from release to Lower Granite Dam tailrace, Lower
Granite Dam tailrace to Little Goose Dam tailrace, and Little Goose Dam tailrace to Lower
Monumental Dam tailrace, respectively. If post-detection bypass mortality were 13% at each
dam, then the Modified Single Release (MSR) Model (Dauble et al. 1993) would have been
appropriate. Survival probability estimates based on the MSR Model would have been 0.531,
0.563, and 0.531 for the respective reaches. The overall survival probability estimate from
release to Lower Monumental Dam tailrace was 0.148 under the SR Model and would have been
0.159 under the MSR Model assuming 13% post-detection mortality at each dam.

RECOMMENDATIONS
Based on the results of three years of this study, we recommend the following:

1) To release groups of appropriate-sized, PIT-tagged hatchery subyearling fall chinook
salmon weekly from release locations upstream from Lower Granite Dam in the free-flowing
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Snake River and in the Clearwater River. Groups should be released over as long a time period
as practicable, to help determine relationships between travel time, survival, and environmental
factors.

2) To release groups weekly at Billy Creek in the Snake River for comparison to the
Pittsburg Landing releases to determine where mortality occurs en route to Lower Granite Dam.

3) To release fish from an upstream site, collect them at Lower Granite Dam using the
separation-by-code system, divide collected fish into two paired release groups, and rerelease
them into the bypass and tailrace (with as little handling as possible) to estimate post-detection
bypass survival. This method should provide fish that are comparable in size and physiological
status to PIT-tagged fish from primary release groups as they pass the dams.
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